Mobile Mapping System v2

LIFE-LINES (LIFE14 NAT/PT/001081)
Linear Infrastructure Networks with
Ecological Solutions
60% co-financed project by the LIFE Nature and Biodiversity Program of the
European Commission

Hélder Ribeiro Diana Sousa-Guedes Joana Silva Neftalí Sillero

PROJECT ROADKILLS PTDC/BIA-BIC/4296/2012

We previously developed a cheap, easy to implement, and automatic solution for detecting road-kills using *computer vision* techniques from robotics

- over large areas (broad monitoring)
- over time (continuous monitoring)

OBJECTIVES – Mobile Mapping System 2METHODS RESULTS CONCLUSIONS

- Improved version of the Mobile Mapping System 1
- A better system for detecting amphibians and small birds road-kills

- Device attached directly to the back or front of any car
- Algorithm prepared for the use of one or two ZED cameras
- Reduced size and energetic consumption

- Mobile software to turn on/off device, written in Java
- Desktop software to collect and save ZED images, written in C++
- Desktop software to detect animals in ZED images, written in C++, Java, Python, and PHP

Initial tests:

Done using 150 images, with 25 containing animals

Different architectures from the CNN and initial detection results:

- · VGG19 -> 42%
- · ResNet50 -> 35%
- Inception V3 -> 62%
- 97 Xception -> 23%
- · VGG16 -> 62%

Final selection VGG16 algorithm:

- Pre-trained on ImageNet challenge with 1000 classes already trained
- Some containing animals that also were helpful for us
- The post-training was done using our subset of images (amphibians and birds).
- The model run on 25 epochs with the 2546 images of the training database.
- 1296 images acquired by MOVE (Kindly delivered by Luis G. Sousa)
- 1250 images acquired by initial ZED in field tests

- Control tests with collection specimens of amphibians and birds
- Real tests on road surveys in Portugal

Number of frames with animals

The configuration with the best performance was the combination of a resolution of 2208 \times 1242, 30 FPS, and a vehicle speed of 60 km/h with 80% of correct classifications, 20% of failed classifications, and 20% of false positives

Resolution	FPS	Speed	Total Images	Images with Animals	True Positives	Failed Classification	False Positives	Correct Classification
2208 × 1242	60	80 km/h	1406	53	39	14 (26.4%)	9 (18.8%)	73.5%
2208×1242	30	60 km/h	980	25	20	5 (20%)	5 (20%)	80%
1920×1080	60	30 km/h	1250	42	31	11 (26.2%)	7 (18.4%)	73.8%
1920×1080	30	60 km/h	680	35	27	8 (22.9%)	6 (18.2%)	77.1%
1280×720	60	70 km/h	1560	32	24	8 (25%)	6 (20%)	75%
1280×720	30	30 km/h	850	42	31	11 (26.2%)	7 (18.4%)	73.8%
1280×720	80	20 km/h	2230	52	37	15 (28.8%)	9 (19.6%)	71.2%
1280×720	60	100 km/h	1120	30	19	11 (36.7%)	6 (24%)	63.3%
2208×1242	60	30 km/h	1420	25	19	6 (24%)	4 (17.4%)	76%
1920×1080	60	30 km/h	1600	26	19	7 (26.9%)	5 (20.8%)	73.1%
2208×1242	30	40 km/h	820	32	25	7 (21.9%)	6 (19.4%)	78.1%
1920×1080	30	40 km/h	905	34	26	8 (23.5%)	6 (18.8%)	76.5%

- Successful identification of animals on roads
- Algorithms can be trained with other animal groups or objects
- Successfully reduced the size and energetic consumption
- Developed using low cost components
- Attachable to any vehicle
- > Saved funds, time and personal resources

LIFE-LINES (LIFE14 NAT/PT/001081)
Linear Infrastructure Networks with
Ecological Solutions
60% co-financed project by the LIFE -

Nature and Biodiversity Program of the European Commission