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A B S T R A C T   

Roads and roadsides provide dispersal channels for non-native invasive alien plants (IAP), many of which hold 
devastating impacts in the economy, human health, biodiversity and ecosystem functionality. Remote sensing is 
an essential tool for efficiently assessing and monitoring the dynamics of IAP along roads. In this study, we 
explore the potentialities of object based image analysis (OBIA) approach to map several invasive plant species 
along roads using very high spatial resolution imagery. We compared the performance of OBIA approaches 
implemented in one open source software (OTB/Monteverdi) against those available in two proprietary pro
grams (eCognition and ArcGIS). We analysed the images by two sequential processes. First, we obtained a land- 
cover map for 15 study sites by segmenting the images with the algorithms Mean Shift Segmentation (MSS) and 
Multiresolution Segmentation (MRS), and by classifying the segmented images with the algorithms Support 
Vector Machine (SVM), Nearest Neighbour Classifier (NNC) and Maximum Likelihood Classifier (MLC). We 
created a mask using the polygons classified as non-vegetation to crop the images of the 15 study sites. Second, 
we repeated the previous segmentation and classification steps over the 15 masked images of vegetated areas 
using the same algorithms. OTB/Monteverdi, with MSS and SVM algorithms, showed to be a good software for 
land-cover mapping (OA = 87.0%), as well as ArcGIS, with MSS and MLC algorithms (OA = 84.3%). However, 
these two programs, using the same segmentation algorithms, did not achieve good accuracy results when 
mapping IAP species (OAOTB/Monteverdi = 63.3%; OAArcGIS = 45.7%). eCognition, with MRS and NNC algorithms, 
reached better classification results in both land-cover and IAP maps (OALand-cover = 95.7%; OAInvasive-plant =

92.8%). ’Bare soil’ and ‘Road’, and ‘A. donax’ were the classes with best and worst overall accuracy, respectively, 
when mapping land-cover classes in the three programs. ‘Other trees’ was the class with the most accurate and 
significant differences in the three programs when mapping IAP species. The separation of each invasive species 
should be improved with a phenology-based design of field surveys. This study demonstrates the effectiveness of 
sequential segmentation and classification of RS data for mapping and monitoring plant invasions along linear 
infrastructures, which allows to reduce the time, cost and hazard of extensive field campaigns along roadsides.   
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1. Introduction 

Invasive alien plants (IAP) can cause devastating impacts in the 
economy, human health, biodiversity and ecosystem functioning of 
invaded regions (Bock et al., 1986; Pyšek and Richardson, 2010; Wil
liams and Baruch, 2000). Despite the efforts to control and eradicate 
IAP, their impacts continue to increase worldwide (Andreão et al., 2016; 
Hulme et al., 2010). Invasions by IAP are difficult to manage and prevent 
due to their ability to disperse and attain high abundances (Pluess et al., 
2012; Rejmánek and Pitcairn, 2002). Further information is needed on 
the invasion process itself and on the role that environmental conditions 
and landscape structures play during invasions (Andrew and Ustin, 
2010; Minor and Gardner, 2011). 

IAP frequently spread along roads and roadsides (Christen and 
Matlack, 2006; Kalwij et al., 2008; Mortensen et al., 2009). The high 
density of roads in Europe enables a rapid expansion of IAP (Hulme, 
2009), with vehicles acting as vectors for the propagation of seeds and 
vegetative parts of plants (Dar et al., 2015; Joly et al., 2011; Lelong 
et al., 2007). Our understanding about the underlying dispersion 
mechanisms must improve in order to minimize the related negative 
effects (Lemke et al., 2019). In this sense, fast and repeatable detection 
methods are essential for cost-effective monitoring (Nielsen et al., 2005; 
Pyšek and Hulme, 2005; Vilà and Ibáñez, 2011; Wittenberg and Cock, 
2005), thereby enabling a more efficient management of IAP (Baard and 
Kraaij, 2019; Müllerová et al., 2017; Sharma, 2019). 

Remote sensing (RS) thus emerges as an important tool for assessing 
and monitoring the dynamics of IAP along roads, providing information 
in a quick, efficient, continuous, consistent and repeatable way over 
large areas. High spatial resolution images provide an intuitive and 
direct RS method to visually detect the spatial distribution of IAP 
(Huang and Asner, 2009). Current and historical very high spatial res
olution (VHR) aerial photographs provide important information about 
landscape changes over time, helping to identify the target species 
through the acquisition of appropriate period images and good time 
series (Brook and Bowman, 2006; Laliberte et al., 2004). This approach 
can complement the traditional field monitoring of IAP, which can be 
logistically difficult and expensive. 

Object-based image analysis (OBIA) presents new possibilities of 
automated or semi-automated processing of high spatial and low spec
tral resolution data (Laliberte et al., 2004; Pringle et al., 2009). OBIA is 
characterized by sequential segmentation and classification processes. 
Segmentation involves grouping contiguous pixels (image objects) 
where features based on spectral variables, shape, texture, size, thematic 
data, and spatial relationship (contiguity) are assigned to each object 
(Blaschke, 2010). The classification process consists in classifying each 
object based on the assigned features. The characteristics of VHR im
ages, large amount of shadow, low spectral information or low signal-to- 
noise ratio, favor the use of OBIA, obtaining better results than pixel- 
based analyses (Hodgson et al., 2003). Still, the availability of a large 
amount of spectral, spatial and contextual data for each image object can 
make the process subjective or time consuming (Laliberte et al., 2012). 

The number of studies using OBIA for classifying IAP has recently 
increased (Alvarez-Taboada et al., 2017; Gonçalves et al., 2019a, 2019b; 
Jones et al., 2011; Khare et al., 2018; Ouyang et al., 2011; Pande-Chhetri 
et al., 2017). For instance, VHR aerial imagery is now commonly used to 
map non-native IAP, with satisfactory results for the giant hogweed 
(Heracleum mantegazzianum) in the Czech Republic (Müllerová et al., 
2005; Müllerová et al., 2013) and for the Japanese knotweed (Reynoutria 
japonica) in the UK (Jones et al., 2011). Michez et al. (2016) mapped 
three riparian invasive taxa derived from Unmanned Aerial Systems 
(UAS) imagery using OBIA analysis. However, OBIA methods with VHR 
images to map IAP along roads remain unexplored. 

OBIA methods are considered relatively complex and are mainly 
included in different commercial software (e.g. Bas, 2016; eCognition, 
2013). However, their availability, as well as integration in open source 
software and tools, has increased in recent years (Gonçalves et al., 

2019a, 2019b; Knoth and Nust, 2016; Teodoro and Araujo, 2016). The 
importance of using OBIA in open source software is related to the low 
cost and ease of networking through reproducibility and collaboration 
(Knoth and Nust, 2016). In this context, here we explored the potenti
alities of open source OBIA approaches to map IAP along roads using 
VHR aerial imagery. Specifically, we aimed to compare the performance 
of sequential OBIA algorithms implemented in the open source software 
Orfeo Toolbox/Monteverdi 5.6.1 (hereafter OTB/Monteverdi) and the 
proprietary software eCognition Developer 8.9 (hereafter eCognition) 
and ESRI ArcGIS 10.4.1 (hereafter ArcGIS). This study is motivated by 
the importance of developing fast, repeatable and cost-efficient methods 
for timely monitoring of non-native IAP, using RS in order to reduce the 
time, cost and hazard of extensive field campaigns along roadsides. 

2. Material and methods 

2.1. Study area 

The study area includes the roadsides of the national roads EN4 and 
EN114 located in the Alentejo region (Southern Portugal; Fig. 1), with a 
total length of ca. 112 km (WGS84 coordinates: from 8.39 W, 38.57 N to 
7.53 W, 38.84 N). 

The climate is of the Mediterranean type, characterized by cold and 
wet winters and by hot and dry summers when temperatures reach up to 
40 ◦C (Corte-Real et al., 1998). The topography of the two studied roads 
is relatively flat, with altitude ranging between 100 and 400 m a.s.l. The 
landscape of the national roads EN4 and EN114 is characterized by a 
diverse mosaic of land-cover types, including: (i) a savannah-like Med
iterranean agroforestry system based on evergreen cork (Quercus suber) 
and holm oak (Q. rotundifolia) trees; (ii) intermixed with extensive open 
agricultural areas (non-irrigated arable land, permanently irrigated 
land), olive groves, vineyards, pastures; iii) forest plantations mainly of 
pines (Pinus pinea) and eucalypts (Eucalyptus spp.), broad-leaved forest, 
coniferous forest, and transitional woodland-shrub; and iv) artificial 
surfaces, such as continuous urban fabric, discontinuous urban fabric, 
industrial or commercial units, mineral extraction sites, sport and leisure 
facilities (Gonçalves et al., 2019a, 2019b; Meneses et al., 2018). All this 
landscape surrounds the roadsides of the study roads on which expan
sion and/or colonization of IAP species may occur. 

The study area also includes the IAP species Silver wattle (Acacia 
dealbata), Australian blackwood (Acacia melanoxylon), Black locust 
(Robinia pseudoacacia), Tree of heaven (Ailanthus altissima) and Giant 
reed (Arundo donax), which are the target species of this study (Table 1). 
These IAP have the ability to produce a lot of seeds that can be accu
mulated in different seed banks and remain viable in the ground for 
many years. Seeds germinate after a space opening and/or fire occur
rences, or if they have humidity. These plant species are considered 
invasive in a number of European countries and are listed among the 
hundred most aggressive invaders in Europe (DAISIE database, www. 
europe-aliens.org, invasoras.pt). In Portugal, the regulation of the 
introduction of IAP species was recognized in 1999 (Decreto-Lei n◦. 
565/99, of 21 December) and in 2019 considered the existence of 200 
IAP species. Since 2013, the ‘project invasoras.pt’ is increasing knowl
edge and raising awareness of the Portuguese population on biological 
invasions which help to tackle the IAP problem. 

2.2. Image data 

An aerial flight was conducted in May of 2016 to collect VHR aerial 
images of the study area, covering the roads, the roadsides and the 
neighbouring land for IAP mapping (Fig. 2). According to the references 
(Table 1), the month of May corresponds to a particular phenological 
stage that captures the flowering and the peak of high productivity of 
most of the target IAP species. The spatial resolution of the aerial im
agery was 10 cm/pixel with three bands in the visible spectrum, i.e. Red 
(R), Green (G) and Blue (B), and one band in the Near-Infrared (NIR). 
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Images were acquired with the support of high accuracy GPS and inertial 
navigation equipment, which allowed for precise georeferencing. All 
image bands were georeferenced and orthorectified. The images were 
orientated in the Agisoft Photoscan software, based on the coordinates 
of the projection centres given by precision GPS on board the plane. 
Then, we extracted a point cloud and generated a digital surface model. 
Finally, we computed the orthorectification and mosaic composition. 

2.3. Field data 

We conducted a field survey in May of 2016 along the roadsides of 
the study area (EN4 and EN114). We identified 96 individuals of IAP 
species, such as A. dealbata, A. melanoxylon, R. pseudoacacia, A. altissima 
and A. donax, that were located with the aid of a real-time kinematic 
(RTK) GPS receiver with 2 cm + 2 parts per million (ppm) of accuracy 
(Fig. 2). We used 70% of these occurrence data to train the classifier and 
30% of the data as ground truth. 

The final set of target IAP species included the Silver wattle 
(A. dealbata), the Australian blackwood (A. melanoxylon), the Black lo
cust (R. pseudoacacia), the Tree of heaven (A. altissima) and the Giant 
reed (A. donax). These plant species are considered invasive in a number 
of European countries and are listed among the hundred most aggressive 
invaders in Europe (DAISIE database, www.europe-aliens.org, inva
soras.pt). 

Based on the location of the individuals of IAP recorded during the 
field survey, we defined 15 sites representative of the land-cover di
versity in the study area (Fig. 1; Supplementary Material 1 – SM1). Each 
of the 15 study sites comprised a maximum of three of the target IAP 
species (Table 2). Since IAP are located along the roadside, we cropped 
the images of the 15 sites considering a 30 m buffer area from the roads 
(Fig. 2). 

2.4. Overview of the software used 

We computed the segmentation and classification procedures using 
one open source program, OTB/Monteverdi, and two proprietary pro
grams, eCognition and ArcGIS, using different algorithm 
parametrisations. 

From several available open source programs with OBIA algorithms, 
e.g. OTB/Monteverdi (ORFEO Toolbox, 2014), Spring (Spring-DPI/ 
INPE, 2014), GRASS (GRASS GIS, 2014) and SegOptim (R package), we 
selected OTB/Monteverdi, designed for processing high resolution 

optical, multispectral and radar images (Christophe and Inglada, 2009). 
It supports raster and vector data and provides a wide variety of appli
cations from ortho-rectification to classification and processing (Calleja 
et al., 2019). 

Most studies based on OBIA algorithms use the proprietary software 
eCognition (now called Definiens Professional), an object-based image 
analysis software (Laliberte and Rango, 2009; Peña et al., 2013). 
eCognition is used in Earth sciences to develop rule sets for automatic 
analysis of RS data (Tarantino et al., 2019). The ArcGIS software has 
incorporated OBIA algorithms for segmentation (MSS) and classification 
(ISO Cluster, Maximum Likelihood, Random Forest and SVM classifiers). 
These two proprietary programs allow efficient inclusion of spatial 
concepts by segmenting an image into multipixel objects according to 
both spatial and spectral features. These objects are defined to maximize 
between-object variability and minimize within-object variability for 
user-chosen inputs. Rule-based decisions may then be applied to assign a 
class to each object. The fuzzy logic classifier provides additional 
adaptability. 

2.5. OBIA methods 

2.5.1. Segmentation 
Segmentation is the process of partitioning the images into a 

spatially contiguous set of objects, each composed of a neighbouring 
group of pixels with homogeneity or semantic significance. We used the 
Mean Shift Segmentation (MSS) algorithm (Comaniciu and Meer, 2002) 
present at OTB/Monteverdi and ArcGIS, and the Multiresolution Seg
mentation (MRS) algorithm (Baatz and Schäpe, 2000) available in 
eCognition. 

The MSS is a non-parametric method designed for the analysis of a 
complex space (Comaniciu and Meer, 2002). It is based on three main 
parameters: the spatial radius used to define the neighbourhood; the 
radius of the interval used to define the colour space interval (expressed 
in radiometry unit); and the minimum size for regions to be maintained 
after grouping (in pixel unit). These parameters are adjusted to build the 
segments based on a pixel, creating a set of neighbouring pixels within a 
given spatial radius and colour range. We tested different MSS scale 
parameters in OTB/Monteverdi and ArcGIS to obtain the best segmen
tation result. Although we used the same segmentation algorithm, the 
programs present different scale parameters to select. In OTB/Mon
teverdi, we defined after several trails the spatial radius and range radius 
of 20, and minimum region size of 500 pixels, while in ArcGIS, we 

Fig. 1. Map of the study area and its location in Portugal and Europe. We defined 15 study sites (red dots) along the two focal roads (yellow lines) as representative of 
the land-cover diversity of the study area. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

P. Lourenço et al.                                                                                                                                                                                                                               



International Journal of Applied Earth Observations and Geoinformation 95 (2021) 102263

4

selected spectral detail of 17, spatial detail of 2 and minimum segment 
size of 10 pixels. All bands were equally balanced in the segmentation 
parameter in both programs. For segmentation and classification in 
OTB/Monteverdi we used all bands, while in ArcGIS we used only three 
bands (G, R, and NIR), the most related to vegetation, which is the 
maximum number of bands allowed. 

The MRS algorithm consists of the consecutive fusion of pixels or 
image objects that partitions the image into image objects based on 
homogeneity criteria controlled by user-defined parameters such as 
shape, compactness/smoothness and scale parameter (Baatz and 
Schäpe, 2000). After testing different scale parameters, we defined the 
scale analysis of 70. We set the homogeneity criteria (shape and 
compactness) to default values of 0.1 and 0.5, respectively. We assigned 
an image layer weight 1 to the RGB bands and 2 to the NIR band due to 
its importance for mapping vegetation, which presents a high peak of 
reflectance at this wavelength. The chosen combinations correspond to 
the best conjugations of the four segmentation parameters obtained in 
the identification (segmentation) of the different available objects. 

2.5.2. Classification 
Training of the classifier was done using field data and expert 

knowledge. The Jeffries-Matusita index (JM) was applied to quantify the 
pair-wise classes’ spectral separability and to allow the improvement of 
data quality (Richards and Richards, 1999) of land-cover and IAP spe
cies maps. 

We tested three supervised classification algorithms to accurately 
classify the 15 images: (1) Support Vector Machine (SVM) available in 
OTB/Monteverdi; (2) Nearest Neighbour classifier (NNC) available in 
eCognition; and (3) Maximum Likelihood classifier (MLC) available in 
ArcGIS. The purpose of supervised classification is to categorize all 
pixels of the image in land-cover classes (Lillesand et al., 2014). Since we 
are using OBIA methods, we categorized the segments, composed by a 
set of pixels with similar characteristics. We used segments as training 
samples. In this way, we expected to obtain a very high classification 
accuracy and high quality of the information generated (Blaschke, 
2010). 

SVM is a machine learning non-parametric supervised classifier that 
analyses data used for classification and regression analysis (Vapnik, 
1999). This algorithm has been used in various RS applications, such as 
mapping IAP (e.g. Gil et al., 2013; Shiferaw et al., 2019). The SVM al
gorithm, from a set of class-identified training examples, builds a model 
that assigns new examples to one class or another. SVM constructs a 
linear separation rule between examples in a higher-dimensional space 
induced by a mapping function in training samples. 

NNC is a non-parametric method that uses a representative set of 
samples from each class to assign class values to segmented objects. This 
sample set is used by the algorithm to predict the class values of image 
objects, i.e. sample image objects closest to an image object of a given 
class will be assigned to that class (eCognition, 2013). 

MLC algorithm considers that the distribution of a sample is Gaussian 
and the decision making is based on the Bayes Theorem. Based on these 
two characteristics, the statistical probability of each object is calculated 
to determine the membership of the object to the class, and an object is 
classified to the class to which it has the highest probability of being a 
member (Lillesand et al., 2014). 

2.6. Accuracy assessment 

We computed the overall accuracy (OA) and the Kappa coefficient, 
commonly used in accuracy assessment, to determine the accuracy of 
the land-cover and IAP species classified images. OA is calculated 
considering the error matrix by dividing the correctly classified pixels by 
the total number of pixels checked. Kappa coefficient is a multivariate 
technique for accuracy assessment that provides a measure of whether 
the confusion matrix is significantly different from a random result 
(Congalton, 1991; Congalton et al., 1983). This coefficient varies Ta
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between<0 (random) and 1 (perfect agreement) (Landis and Koch, 
1977). 

The results of the accuracy assessment are presented in a confusion 
matrix where the allocated class crosses the reference data for the 
sample locations (Foody, 2002). From the confusion matrix, we 
computed producer’s accuracy (PA) and user’s accuracy (UA) of the 
land-cover and IAP species classes, which are the mapmaker (producer) 
and the map user accuracies, respectively. 

We compute Kruskal-Wallis test and the post-hoc Dunn test to 
compare and to assess significant differences in the groups of the classes 
of land-cover and IAP species classification maps among the three pro
grams. The Kruskal-Wallis test is a non-parametric method, alternative 
to the One Way ANOVA, used to compare two or more groups (Vargha 
and Delaney, 1998). The Dunn Test is a post-hoc non-parametric test, 
recommended to the Tukey test, used to assess significant differences in 
a small subset (Dunn, 1964). 

2.7. Workflow 

We mapped the target IAP species in the study area through a 
sequential process (Fig. 3). First, we established a legend with 8 classes 
for land-cover classification supported by JM pair-wise classes’ spectral 
separability to separate the vegetation classes from non-vegetation 
classes in the 15 study sites by segmentation, using the algorithms 
MSS and MRS, and by classification, using the algorithms SVM, NNC, 
MLC (Fig. 3). This first classification included the following classes: (1) 
‘Bare soil’, (2) ‘Arundo donax’, (3) ‘Grass’, (4) ‘Road’, (5) ‘Shadow’, (6) 
‘Trees’, (7) ‘Urban’, and 8) ‘Water’ (for more information see SM2). We 

considered ‘Arundo donax’ a class apart from ‘Grass’ due to its distinctive 
size and its high dispersal ability along the roadsides in the study area. 
The class ‘Trees’ include all trees present in the study area, such as 
Quercus spp., P. pinea, Eucalyptus spp., IAP trees species and others. Based 
on the vegetation areas obtained from the land-cover map (first seg
mentation followed by classification), we created a vegetation mask 
using the polygons classified as vegetation, i.e. the classes: (2) 
‘A. donax’; (3) ‘Grass’; and (6) ‘Trees’. We used the mask to crop the 
images of the 15 study sites. Second, we mapped the target IAP species 
and calculated JM pair-wise classes’ spectral separability in the 15 study 
sites with a second segmentation and classification, using the same al
gorithms of the first segmentation (MSS and MRS) and classification 
(SVM, NNC and MLC) on the cropped images (Fig. 3). This second 
classification included the classes: (1) ‘Acacia dealbata’, (2) ‘Acacia 
melanoxylon’, (3) ‘Ailanthus altissima’, (4) ‘Arundo donax’, (5) ‘Grass’, (6) 
‘Robinia pseudoacacia’, (7) ‘Shadow’, and (8) ‘Other trees’ (for more 
information see SM3). The class ‘Other trees’ include all trees species 
that are not the target IAP trees species. 

3. Results 

3.1. Classification accuracy for land-cover classes 

eCognition obtained the higher accuracy when classifying land-cover 
classes (OA = 95.7%; Kappa = 0.95; PA = 93.0%; UA = 96.9%), while 
ArcGIS obtained the lower accurate map (OA = 84.3%; Kappa = 0.77; 
PA = 80.0%; UA = 68.2%) (Fig. 4; SM4). OTB/Monteverdi yielded in
termediate accuracy (OA = 87.0%; Kappa = 0.84; PA = 78.0%; UA =

Fig. 2. Examples of Invasive alien plants (IAP) in the study sites along roads, and their location (red rectangles) in the corresponding VHR images: Ailanthus altissima 
(S1 and S11), Arundo donax (S9) and Acacia dealbata (S14). See Table 2 for information on the IAP species recorded by site. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
Numbers of individuals of each invasive alien plant (IAP) species recorded in the 15 sites (S1 to S15).  

Species S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 Total 

Acacia dealbata 1 4   2  3      3  2 15 
Acacia melanoxylon  1  5 6 3  3  7    2  27 
Ailanthus altissima 5  3   1 1    3     13 
Arundo donax 6        2  12     20 
Robinia pseudoacacia  2 4         1 5 8 1 21 
Total 12 7 7 5 8 4 4 3 2 7 15 1 8 10 3 96  
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77.0%). The OA and Kappa coefficient obtained by eCognition were 
significantly different to those attained by ArcGIS and OTB/Monteverdi 
(p-value = 0.0003), while PA and UA obtained by eCognition and OTB/ 
Monteverdi were significantly different to those obtained with ArcGIS 
(p-value < 0.0001). 

The classes with the best PA in the three programs were ‘Bare soil’ 

and ‘Road’ (PA ≥ 92.4%) (Fig. 5a; SM5; SM6). The classes with the 
lowest PA values in eCognition were ‘Water’, ‘Urban’ and ‘A. donax’ (PA 
= 83.3%, PA = 88.5% and PA = 89.3%), in ArcGIS were ‘A. donax’ and 
‘Trees’ (PA = 56.2% and PA = 67.2%), and in OTB/Monteverdi were 
‘A. donax’ and ‘Urban’ (PA = 22.2% and PA = 48.9%). The classes with 
the best UA in the three programs were ‘Water’ (UA = 100%), followed 

Fig. 3. Workflow of the sequential methodology applied to map invasive alien plants (IAP) species in the 15 study sites: 1st segmentation and classification to obtain 
the land-cover map of the study area, followed by a 2nd segmentation and classification to map the target IAP species. 

Fig. 4. Overall accuracy, Kappa coefficient, producer’s and user’s accuracy (PA and UA) of land-cover classes in the 15 study sites by OTB/Monteverdi (orange), 
eCognition (green) and ArcGIS (blue). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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by ‘Shadow’ in eCognition (UA = 99.8%) and ‘Road’ in ArcGIS and OTB/ 
Monteverdi (UA ≥ 98.5%) (Fig. 5b; SM5; SM6). The classes with the 
lowest UA in the eCognition were ‘Trees’ and ‘A. donax’ (UA = 91.5% 
and UA = 92.9%), and ‘A. donax’ and ‘Urban’ in ArcGIS (UA = 9.5% and 
UA = 33.3%) and OTB/Monteverdi (UA = 40.0% and UA = 22.2%). The 
Fig. 6 shows an example of the land-cover classification map of the S14. 

The separability between non-vegetation (‘Bare soil’, ‘Road’, ‘Urban’ 
and ‘Water’) and vegetation (‘A. donax’, ‘Grass’ and ‘Trees’) classes was 
very good, with a minimum value of 1.5 for the JM index in the land- 
cover map. The exception occurred between ‘Bare soil’ and ‘Grass’ 
which separability was good, with JM = 1.3. Regarding the separability 
between ‘Water’ and, ‘A. donax’ and ‘Urban’, there is no information 
because only the sites 4 and 15 have the class ‘Water’ and none of the 
last two classes (SM1, SM2). The separability between ‘Shadow’ and, 
‘A. donax’ and ‘Grass’ was very good (JM = 1.6), and between ‘Trees’ 
was good (JM = 1.1). There was also a very good separability among the 
non-vegetation (‘Bare soil’, ‘Road’, ‘Urban’ and ‘Water’) with JM > 1.6, 
except between ‘Bare soil’ and ‘Urban’ which presented a low separa
bility (JM = 1.0). The separability between the vegetation classes was 
low (JM < 1). In addition, the vegetation classes, i.e. ‘A. donax’, ‘Grass’, 
‘Trees’, and ‘Urban’ were significantly different from ‘Bare soil’ (p-value 
= 0.0000 for all), ‘Road’ (p-value = 0.0000 for all), ‘Shadow’ (p-value =
0.0000 for all) and ‘Water’ (p-value = 0.0005; p-value = 0.0323; p- 
value = 0.0038; p-value = 0.0041) (Fig. 7; SM5; SM6). 

3.2. Classification accuracy for invasive alien plants 

The best classification map of IAP species, i.e. the result of the second 
segmentation and classification map, was obtained with the eCognition 

(OA = 92.8%; Kappa = 0.89; PA = 90.1%; UA = 91.7%) (Fig. 8; SM7). 
According to the OA and Kappa values, ArcGIS achieved the least ac
curate map (OA = 45.7%; Kappa = 0.24). OTB/Monteverdi attained 
better results for OA and Kappa than ArcGIS (OA = 63.3%; Kappa =
0.29). However, it obtained the lowest values of PA and UA overall (PA 
= 28.1%; UA = 30.4%), compared to ArcGIS (PA = 50.5%; UA =
37.5%), both distant from eCognition. The OA was significantly 
different among the three programs (p-value = 0.017). The Kappa, PA 
and UA of eCognition were significantly different (higher) to OTB/ 
Monteverdi and ArcGIS (p-value = 0.000). 

The classes with the best PA were ‘Shadow’ in eCognition (PA =
95.5%) and ArcGIS (PA = 75.6%), and ‘Other trees’ in OTB/Monteverdi 
(PA = 61%) (Fig. 9a; SM8; SM9). The classes with the lowest PA were ‘A. 
dealbata’ in eCognition (PA = 84.5%) and ArcGIS (PA = 34.0%), and 
‘A. altissima’ in OTB/Monteverdi (PA = 0.0%). The class with the highest 
UA was ‘A. donax’ in eCognition (UA = 96.4%) and ‘Other trees’ in 
ArcGIS (UA = 81.0%) and OTB/Monteverdi (UA = 87.0%) (Fig. 9b; 
SM8; SM9). The classes with the lowest UA were ‘Grass’ (UA = 84.4%) 
and ‘A. altissima’ (UA = 87.6%) in eCognition; ‘A. dealbata’ (UA =
13.9%) and ‘Grass’ (UA = 17.8%) in ArcGIS; and ‘A. altissima’ (UA =
0.0%) and ‘A. melanoxylon’ (UA = 5.7%) in OTB/Monteverdi. In OTB/ 
Monteverdi the classes with the lowest PA and UA were the IAP trees, i.e. 
‘R. pseudoacacia’, ‘A. dealbata’, ‘A. melanoxylon’ and ‘A. altissima’. The 
Fig. 10 shows an example of the IAP species classification map of the 
S14. 

The separability between IAP tree species (‘A. dealbata’, 
‘A. melanoxylon’, ‘A. altissima’, ‘R. pseudoacacia’) and ‘Other trees’ was 

Fig. 5. Producer’s accuracy (a) and user’s accuracy (b) of the land-cover classes in the 15 study sites by OTB/Monteverdi (orange), eCognition (green) and ArcGIS 
(blue). Arudon: Arundo donax. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. Land-cover classification map of S14 (see also Fig. 2 and Table 2) in the 
eCognition, ArcGIS and OTB/Monteverdi programs. 

Fig. 7. Spectral signatures of the mapped land-cover classes in the four bands 
of the aerial images (B1 = Blue, B2 = Green, B3 = Red and B4 = NIR). Arudon: 
Arundo donax. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

P. Lourenço et al.                                                                                                                                                                                                                               



International Journal of Applied Earth Observations and Geoinformation 95 (2021) 102263

8

weak, with a JM index value of 0.8 in the IAP species map. The sepa
rability between ‘A. melanoxylon’and ‘R. pseudoacacia’ was very good, 
with a value of 1.6 for the JM index. The separability between 
‘A. dealbata’ and, ‘A. altissima’ and ‘R. pseudoacacia’ was good with 
values of 1.2 and 1.3 for the JM index. On the other hand, 
‘A. melanoxylon’ and, ‘A. dealbata’ and ‘A. altissima’ presented weak 
separability, with JM index values of 0.8 and 0.9. The separability be
tween ‘A. altissima’ and ‘R. pseudoacacia’ was also weak with a JM index 
value of 0.8. The separability was weak between ‘A. donax’ and, 
‘A. altissima’, ‘Grass’ and ‘Shadow’ (JM = 0.8), and between ‘Trees’ (JM 
= 0.7). There is no separability information between ‘A. donax’ and the 
other classes because only the sites S1, S9, S11 and S15 have this class. 
The class ‘Other trees’ held significant differences in accuracy from all 
IAP trees species, i.e. ‘A. dealbata’ (p-value = 0.0008), ‘A. melanoxylon’ 
(p-value = 0.0006), ‘A. altissima’ (p-value = 0.0002), ‘R. pseudoacacia’ 
(p-value = 0.0122), and from ‘Grass’ (p-value = 0.0000) and ‘Shadow’ 
(p-value = 0.0037) (Fig. 11; SM8; SM9). There were no significant dif
ferences among IAP trees species. 

4. Discussion 

4.1. Software performance 

The proprietary software eCognition obtained higher accuracy re
sults, followed by the open source software OTB/Monteverdi and then 
by the proprietary software ArcGIS. Our results corroborate the effec
tiveness of the OBIA methods of eCognition in producing high-quality 
classification maps as reported by other authors (Benz et al., 2004; 
Michez et al., 2016; Moran, 2019; Neubert and Meinel, 2003). Neubert 
and Meinel (2003) evaluated the segmentation of high-resolution im
ages using several programs: the best overall results were reached by 
eCognition, which deals efficiently with the high complexity of VHR 
remote sensing imagery. eCognition applies a multi-scale segmentation 
with fuzzy logic based image classification capabilities (Meinel and 
Neubert, 2004). The great advantage of eCognition is its capacity to 
perform segmentation and classification together as a whole, i.e. the 
parameters of segmentation and classification are chosen automatically 
in order to optimize the results. 

In general, the OTB/Monteverdi SVM algorithm showed a better 
classification performance than the ArcGIS MLC algorithm when 
computing classification maps. Several authors demonstrated that SVM 

Fig. 8. Overall accuracy, Kappa, producer’s and user’s accuracy (PA and UA) of IAP in the 15 study sites by OTB/Monteverdi (orange), eCognition (green) and 
ArcGIS (blue). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 9. Producer’s accuracy (a) and user’s accuracy (b) of invasive alien plants (IAP) in the 15 study sites by OTB/Monteverdi (orange), eCognition (green) and 
ArcGIS (blue). Acadea: Acacia dealbata. Acamel: Acacia melanoxylon. Ailalt: Ailanthus altissima. Arudon: Arundo donax. Robpse: Robinia pseudoacacia. Trees: Other 
trees. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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is indeed a more accurate classifier compared to MLC (Deilmai et al., 
2014; Mondal et al., 2012; Nitze et al., 2012). The SVM classifier has 
proved its effectiveness in the classification of VHR ground cover images 
(Bruzzone and Carlin, 2006; Inglada, 2007; Tuia et al., 2009), while MLC 
is known to face some problems when handling complex images (Dei
lmai et al., 2014). 

At the moment of software selection for OBIA techniques, one must 
not forget the cost-effectiveness of an open source software solution 
compared to proprietary software. Open source software solutions have 
an advantage over proprietary software because they are freely available 
and accessible to all users, including those without purchasing capacity 
(Rocchini and Neteler, 2012; Wegmann et al., 2016). Another advantage 
of open source software is that the source code can be shared and 
modified to meet the needs of each user. However, proprietary software 
is frequently more user-friendly despite its price. Currently, open source 
software (such as R, GRASS, QGIS, OTB, SAGA, and GDAL) offer similar 
features to proprietary software (Esri, ERDAS, ENVI / IDL, and eCog
nition) at no cost. 

4.2. Accuracy assessment and implications for monitoring 

The land-cover classification provided generally higher overall ac
curacy values than the IAP classification. These differences are due to 
the low range of spectral separability of the classes related to IAP species 
with JM index minimum and maximum values of 0.7 and 1.6, while the 
separability among land-cover classes vary between 0.7 and 2.0 of JM 
index minimum and maximum values. These differences are observed 
also in the digital number range per land-cover classes varying from 4 
and 196, while the digital number range per IAP classes varies between 
28 and 163 (Figs. 7 and 11). Indeed, we performed the second seg
mentation and classification to maximise the spectral differences be
tween IAP species in order to obtain a good classification of IAP. 
However, OTB/Monteverdi (PAmin = 0% and PAmax = 57.5%; UAmin =

0% and UAmax = 37.5%) and ArcGIS (PAmin = 34% and PAmax = 64.1%; 
UAmin = 13.9% and UAmax = 53.9%) showed a poor OBIA performance 
in the classification of IAP classes compared with the good IAP mapping 
performance of eCognition (PA and UA > 84.4%). Moreover, the rather 
high accuracy attained for the land-cover classification map may be 
explained by the high spectral separability of the more distinct land
scape classes. 

Our results showed that there is some spectral difference between 
IAP tree species and ‘Other trees’ (mainly pines, eucalypts and evergreen 
oaks). OTB/Monteverdi showed good OBIA performance in accurately 
classify the class ‘Other trees’ (PA = 61.0% and UA = 87.0%) but not the 
IAP trees per se (PAmin = 0% and PAmax = 10.0% and UAmin = 0% and 
UAmax = 20.0%). The differences observed among IAP classes may be 
due to the date of the image acquisition (beginning of May) which 
corresponds to the period of greatest greenness for most, but not all, IAP 
species. For example, the Tree of heaven (Ailanthus altissima) is char
acterized by a later seasonal development than other tree species 
because it requires high temperatures for leaf sprouting (Kowarik and 
Säumel, 2007). In May, temperatures begin to rise in the study region 
(Alentejo) in an average of ± 22 ◦C to ± 27 ◦C and, on the date of 
acquisition of the images, the branches of the trees of A. altissima did not 
have their maximum foliage. Consequently, the reflectance of this spe
cies was low, compared to other tree species (e.g. A. melanoxylon and 
R. pseudoacacia). In the case of A. dealbata, the overall accuracy was 
lower compared to A. melanoxylon, because in May the flowering period 
of the former has already ended (January to April; Table 1) whereas the 
latter is still within the flowering period (February to June; Table 1) 

Fig. 10. IAP species classification map of S14 (see also Fig. 2 and Table 2) in the eCognition, ArcGIS and OTB/Monteverdi programs.  

Fig. 11. Spectral signature of the classes in the invasive alien plants (IAP) map, 
in the four bands of the aerial images (B1 = Blue, B2 = Green, B3 = Red and B4 
= NIR). Acadea: Acacia dealbata. Acamel: Acacia melanoxylon. Ailalt: Ailanthus 
altissima. Arudon: Arundo donax. Robpse: Robinia pseudoacacia. (For interpre
tation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 
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(Correia, 2012). 
We also observed some misclassification between the classes 

‘A. donax’ and ‘Grass’ despite the high values of accuracy assessment, 
which may be related to their similar spectral signature. In May, native 
grasses are very vigorous in the study area due to water availability and 
moderate temperatures, while A. donax is still not in its flowering period 
(August to October; Table 1) (Pilu et al., 2012). A good date of image 
acquisition should correspond to the phenological period that allows 
better detection and differentiation among the target species, e.g. the 
peak of flowering (high greenness) (Huang and Asner, 2009), when the 
canopy structure is dense, or there is a high spectral difference between 
the region of the visible and the NIR (Dorigo et al., 2012; Jones et al., 
2011; Somodi et al., 2012). Therefore, when mapping many plant spe
cies, it becomes challenging to find a suitable date of image acquisition, 
particularly in the case of IAP species. 

This study also showed that the expansion of AIP species along roads 
is conditioned by surrounding anthropic areas, as in the study area, for 
instance by agroforestry systems, agricultural and urban areas around 
the road. Further, most of the A. donax areas were located close to 
roadsides and on the limit of the agricultural area and agroforestry 
systems, or in areas with high water availability, e.g. near bridges and 
depressions on the ground. This observation is in agreement with Pilu 
et al. (2012) which state that the invasion of A. donax is located mainly 
in riparian and along the roadside and can reach several kilometres. In 
the study area, some of IAP trees species, e.g. Acacia spp, A. althissima 
and R. pseudoacacia, are used for ornamentation of the housing area, 
fence rows, cracks in sidewalks and road embankments and colonize 
roadsides, as described by several authors (Correia, 2012; Ivajnšič et al., 
2012; Kowarik and Säumel, 2007). Thus, the expansion along the roads 
of the IAP trees species is limited, despite their fast germination and 
seedling growth, because the owners will control their colonization. 
Furthermore, in Portugal, there is an action plan for cleaning the road
sides and fuel management tracks to “contribute effectively to the Forest 
Fire Protection System” (Resolution of the Council of Ministers n.◦ 161/ 
2017, Portugal) that indirectly prevent the expansion and colonization 
of IAP species. 

5. Conclusions 

Our results highlight that it is possible to analyse VHR images with 
OBIA methods and with open-source software similarly to proprietary 
software. More importantly, not always proprietary software is the best 
solution. In our case, eCognition provides OBIA methods and tools for 
mapping land-cover and IAP, but ArcGIS showed to be the less appro
priate software for this type of RS applications due to its limited ca
pacities of OBIA performance. However, the open source software OTB/ 
Monteverdi proved to be a good cost-effective classification option for 
‘Other trees’ using OBIA methods but not for IAP species. It is necessary 
therefore to consider the specific characteristics of the study case in 
order to choose the suitable date of image acquisition and the best 
software. Further, our study showed that IAP species along the study 
roads, characterized as vectors of propagation of seeds and vegetative 
parts of plants, do not have many opportunities to expand into the 
adjacent land because the roadsides are actively managed. 
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